Dual update algorithms to solve certain LPs approximately!

* In this lecture, we look at how a particular “primal-dual” algorithm can be used to solve certain
LPs approximately. This methodology, also called the multiplicative weight update method, under-
lies many different optimization problems, and has applications in other areas such as learning and
portfolio management. We focus on the set cover LP for illustrative purposes.

e Let’s recall the LP for set cover.
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Givenan ¢ € (0, 1), our goal is to find a feasible x € [0, 1]™ such that 3 ;_; ¢;x; < (1 +¢€)lp.

* The main idea behind this algorithm is to select dual variables y. for each e € U. However, the
function of this dual variables in this algorithm is not to generate a large dual objective. Rather, the
function of the dual variables is to aggregate all the n = |U| constraints of the form (1) into one
single constraint, and then solve the primal LP with only a single constraint. This is similar to the
Lagrangean function idea which we saw to get the dual LP; there one actually moved this “single
constraint” also to the objective.

* Fix y, € [0, 1] variables for every e € U. We call this vector y € [0, 1]". Then, consider the following

“single constraint” LP

m
Ip(y) := min Z CjX; (Aggregated Set Cover LP)
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Note that any feasible solution x to (Set Cover LP) is also a feasible solution to (Aggregated Set Cover LP);
this is because the parenthesized term in (3) is > 1 for all e and y. > 0. Therefore, we get the follow-
ing observation.

Observation 1. Forany y € [0,1]", Ip(y) < Ip.
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* The Main Idea, qualitatively. Given a dual vectory € [0, 1]", we first solve (Aggregated Set Cover LP)
to obtain a solution x which, by the above observation, has objective value < Ip. In the next bullet
point we show how to solve (Aggregated Set Cover LP), and we denote this algorithm as an oracle
O, and use the notation x <— O(y). This x, however, may not be feasible for (Set Cover LP).

Next, we use x to modify the dual vector y in the following intuitive manner: for elements e which are
violated in x, that is the LHS of (1) is < 1, we bump up the y. value with the intuition that it would
lead to (Aggregated Set Cover LP)’s new solution to satisfy the eth constraint. Indeed, this “bump”
would be a function of the violation. For elements e which are not violated, we bump down their y.’s
since they seem safe. Once we do this, we again call the oracle to get a new primal solution x, and
the process continues. After 7" such rounds, we have many x;’s, each of which have LP objective
value at most Ip, and yet individually none of them may not be feasible for (Set Cover LP). What is
quite interesting is that there is a systematic way for “bumping up/down” such that after a reasonable
number of rounds, the average of all these x;’s are “close” to being feasible. And then if we scale up
the average, then we get a truly feasible solution to (Set Cover LP) whose objective value is at most
(1+¢)lp.

* Oracle. Before we move on, let’s note that solving (Aggregated Set Cover LP) is quite easy. In
particular, given y, we can rewrite (Aggregated Set Cover LP) as
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where 3 := 3", ye and w; := ZeES- Ve-

Now we observe that (5) is easy to solve. Rename the sets such that Cll < W - < Cm . The

optimum solution to (5) is obtalned by setting x; = 1 for 1 < j < k where k is largest entry with
S wy < B. We set xp 1 = (6 Z] " WJ> The remaining x; = 0 for j > k + 1.

j=1 Wk+1

Exercise: & Prove that the vector x € [0, 1]™ is the optimum solution to (5).

* Feasibility Vector and Multiplicative Weight Update (MWU). We are now ready to give details about
the main idea. The algorithm proceeds in rounds. At the beginning of round ¢, we specify the dual
variables y*) € [0,1]" for each element in UU. We then apply the oracle O(y(")) to obtain a solution
x(®) € [0,1]™. We then use x) to obtain y*+1).

To describe the latter process, we need to define a “satisfiability” vector sat(!) € [—1,4-1]" which
indicates “how satisfied” element e is with respect to the current primal solution x(*). More precisely,

1
VeeU: sat¥(e)i=—- | > x\ 1 (6)
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Here, d is the maximum number of sets an element e can be in. The reason for dividing by d is to
make sure that the range of sat(!) (¢) bounded. In fact, we state this as an observation since it is going
to be crucial.



Observation 2. For any e and any x*) € [0, 1]™, the corresponding sat(*)(e) lies in (=, 1].

Proof. When x() = 0, then the value of sat*)(e) = —1/d, and when x*) = 1, then the value of
sat = d./d < 1. O

We make another observation about the sat(!) vector which in plain English states that the y-linear
combination fo the satisfiabilities is non-negative.

Observation 3. Forany ¢, Y./ yét)sat(t) (e) > 0.

Proof. The LHS is simply 2 - (ZeeU yg) . ijeesj x§t) — > ecr y@). Since x(*) «— O(y®), we

know that x(*) satisfies (3). And thus, the parenthesized term is > 0. ]

Now we are ready to state the algorithm.

1: procedure MWU SET COVER LP SOLVER(U, S1, ..., Sm):
2 Initialize wt™!) () := 1 for all e € U.
1 (1)

3 W= wtl(e) =n; yi) = ¥

4 for t = 1 to T do: > The value of T will be set later.

5: Obtain x(*) « O(y®).

6 Obtain sat®) (e) for all e using (6).

7 > Update the wt and y vector as follows

8 Foralle € U, Wt(t+1)(6) = Wt(t)(e) . (1 /R Sat(t)(e))b n < 1is a parameter which

will be set later.
9: P+ .= Z(ee)U wt(t+1) (¢)
t+1 t+1

10: yg ) _ L’t‘b(tﬂge)
11 LetX := ST x®,
12: Return X, := (1 4+ ¢) - X.

As you can see, the y-vector is in fact a probability distribution generated by “weights” on each
element. If element e has low sat(*) (e), and in particular negative sat*) (¢) indicating the constraint
for e is violated, then its weight is “bumped up”. Alternately, if element e has high sat(*) (e), then its
weight is “bumped down”. Since 7 < 1 and sat(®) (e) < 1, the weights always remain positive. This
is important.

After running for 7" rounds, the final answer is a (1 + ¢)-multiplicative scaling of the average of the
T different x(!)’s. One thing is immediate from Observation 1.

Observation 4. ¢ 'X = 7 (Zthl ch(t)) < Ip. Therefore, ¢ "x,g < (1 + ¢)lp.
* Analysis. The crux of the analysis is in showing that x,g is indeed feasible if 1) and 7" are set carefully.

This in turn proceeds by showing that X is “almost feasible”. Here is the main lemma. Note this
immediately implies for ¢ < 1 the scaled version x,g is feasible, since (1 +¢)(1 —¢/2) > 1,



Lemma 1. Suppose  := § and T := 8‘161#. Fix an element e € U. Then, ) | X;>1-5.

j:e€S;

Proof. The proof is a really slick argument. First note from the definition of X and sat(*) (e) that

d T
Y oxi-1| = o > satl(e) ©)
t=1

J:e€S;

So we need to prove that & Zt 1 sat®(e) > —5. In order to do so, we look at the potential function
o),

Claim 1. For any ¢, (D < ®)_ Thus, T+ < o) = p,

Proof. By definition, wt*1)(e) = wt®)(e) - (1 — - sat®(e)). Using the fact that y*)(e) = &) .

wt®(e), we get
wt@ ) (e) = wt®(e) - (1 — ny

Adding over all e € U and using Observation 3, we get the claim. O

e

The above claim says that the ®(T+1) at the end of the algorithm is “small”. However, d(T+1) js
the sum of the wt(T+1)(e) over all e € U, and these weights are positive. Therefore, ®(T+1) is
strictly greater than the final weight of this particular element e under consideration. However, if e
was violated by “too many” x()’s, then it’s weight would have been bumped pretty high. Since this
weight is not too high (< n), we can argue that “most” x(!)’s satisfied e, and thus the average X also
almost satisfies it. To make this rigorous, we need some analytic gimmickry, but the idea is precisely
this. Let’s get to the details.

First, let us figure out wt(Z+1) (e) at the end of the 7" for-loops. By definition this is
T
wtT+) (e) = H (1 —n- sat(t)(e)> (8)
t=1
Now we are going to use the following inequalities which can be readily checked
For0<z<1,(1—-nx)>(1-n)* For—1<x<0,(1—-nz)>(1+n"" 9)

Now, let P C {1,2,...,T} denote the t’s with sat() (¢) > 0, and N denote the ¢’s with sat®) () < 0.
Then, substituting (9) in (8)

T+1) > H sat<t) H (1 + n)fsat(t) (6) (10)

teP teN

Since the LHS above is < ®(T+1) < n, we get the RHS above is < n. Now, we take log to the base e
on both sides to get

Inn > <Z sat(*) (e)) In(1 — (Z sat® (e ) In(1+n) (11)

tepP teN

4



At this point, suppose 1 was “very tiny” and suppose we could approximate In(1 — ) ~ —n and
In(1 4 7n) ~ 7, then we would get Inn > —n (37, sat®(e)). Rearranging, we would get that
% (Z?Zl sat(t)(e)) > %. So, for this “very tiny” value of 7, if we chose 1" = 26%%, then using
(7) we would obtain the proof of the lemma.

But how “very tiny” does this 1 need to be? Turns out, that 1 needs to be < ¢ so that the errors in the
above approximation do not dominate. And thus, the dependence of 7" on ¢ is inverse quadratic.

Let us now make the above precise. For that we state another helpful inequality which is easily verified
using calculus (or visualized using Wolfram alpha).

ForO0<n<1/2, In(1-7n)>-n+7%); In(l+n) >n—n (12)

Substituting (12) in (11), we get

Inn > —(n+1n°) <Z sat® (e > —n?) (Z sat(t)(e)>
tepP teN
T
> ) <Z sat(t)(e)> — o Z |sat®
t=1 teN
r 2
> =2 sat®(e) | — M
> —2 (; ( )) y

where in the last inequality we used n < 1, and Observation 2. Rearranging, and using (7), we get

Z X;—1 _d zT:sat(t)(e)>—dlnn—
J T & ="y

j:eESj

Substituting 77 := § and T" := Sdln" , we get that > jreeS; X > 1 — §, proving the lemma. O

» Therefore, we see that the set-cover LP can be solved to e-accuracy in O(d Inn/?) oracle calls. Each
oracle call standalone may take O(m) time, but one can be clever and amortize this cost to get an
O((n + m)Inn/e?) running time. For constant &, this is a “near linear” running time.

Notes

The idea described here is originally from the paper [2] by Plotkin, Shmoys, and Tardos. The exposition in
this note heavily borrows from the beautiful survey [1] on the multiplicative weight update method by Arora,
Hazan, and Kale. As can be expected there is nothing special about set-cover LP, and the above technique
holds for a much general class of LPs. We refer the reader to the above two papers.
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